The properti modulative adalah salah satu yang memungkinkan untuk melaksanakan operasi dengan angka tanpa mengubah hasil kesetaraan. Ini sangat berguna nanti dalam aljabar, karena mengalikan atau menambahkan faktor-faktor yang tidak mengubah hasil memungkinkan penyederhanaan beberapa persamaan.
Untuk penjumlahan dan pengurangan, penjumlahan nol tidak mengubah hasil. Dalam kasus perkalian dan pembagian, mengalikan atau membagi dengan satu juga tidak mengubah hasilnya. Misalnya, menjumlahkan 5 menjadi 0 tetap 5. Mengalikan 1000 dengan 1 tetap 1000.

Faktor nol untuk penjumlahan dan satu untuk perkalian bersifat modular untuk operasi ini. Operasi aritmatika memiliki beberapa properti selain properti modulatif, yang berkontribusi untuk menyelesaikan masalah matematika.
Operasi Aritmatika dan Properti Modulatif
Operasi aritmatika adalah penjumlahan, pengurangan, perkalian, dan pembagian. Kami akan bekerja dengan himpunan bilangan asli.
Jumlah
Properti yang disebut elemen netral memungkinkan kita menambahkan tambahan tanpa mengubah hasilnya. Ini memberi tahu kita bahwa nol adalah elemen netral dari penjumlahan.
Dengan demikian, ini dikatakan sebagai modulus penjumlahan dan karenanya menjadi nama properti modulatif.
Sebagai contoh:
(3 + 5) + 9 + 4 + 0 = 21
4 + 5 + 9 + 3 + 0 = 21
2 + 3 + 0 = 5
1000 + 8 + 0 = 1008
500 + 0 = 500
233 + 1 + 0 = 234
25000 + 0 = 25000
1623 + 2 + 0 = 1625
400 + 0 = 400
869 + 3 + 1 + 0 = 873
78 + 0 = 78
542 + 0 = 542
36750 + 0 = 36750
789 + 0 = 789
560 + 3 + 0 = 563
1500000 + 0 = 1500000
7500 + 0 = 7500
658 + 0 = 658
345 + 0 = 345
13562000 + 0 = 13562000
500000 + 0 = 500000
322 + 0 = 322
14600 + 0 = 14600
900000 + 0 = 900000
Properti modulatif juga berlaku untuk bilangan bulat:
(-3) +4+ (-5) = (-3) +4+ (-5) +0
(-33) + (- 1) = (-33) + (- 1) +0
-1 + 35 = -1 + 35 + 0
260000 + (- 12) = 260000 + (- 12) +0
(-500) +32 + (- 1) = (-500) +32 + (- 1) +0
1750000 + (- 250) = 1750000 + (- 250) +0
350000 + (- 580) + (- 2) = 350000 + (- 580) + (- 2) +0
(-78) + (- 56809) = (-78) + (- 56809) +0
8 + 5 + (- 58) = 8 + 5 + (- 58) +0
689 + 854 + (- 78900) = 689 + 854 + (- 78900) +0
1 + 2 + (- 6) + 7 = 1 + 2 + (- 6) + 7 + 0
Dan, dengan cara yang sama, untuk bilangan rasional:
2/5 + 3/4 = 2/5 + 3/4 + 0
5/8 + 4/7 = 5/8 + 4/7 + 0
½ + 1/4 + 2/5 = ½ + 1/4 + 2/5 + 0
1/3 + 1/2 = 1/3 + 1/2 + 0
7/8 + 1 = 7/8 + 1 + 0
3/8 + 5/8 = 3/8 + 5/8 + 0
7/9 + 2/5 + 1/2 = 7/9 + 2/5 + 1/2 + 0
3/7 + 12/133 = 3/7 + 12/133 + 0
6/8 + 2 + 3 = 6/8 + 2 + 3 + 0
233/135 + 85/9 = 233/135 + 85/9 + 0
9/8 + 1/3 + 7/2 = 9/8 + 1/3 + 9/8 + 0
1236/122 + 45/89 = 1236/122 + 45/89 + 0
24362/745 + 12000 = 24635/745 + 12000 + 0
Juga untuk yang irasional:
e + √2 = e + √2 + 0
√78 + 1 = √78 + 1 + 0
√9 + √7 + √3 = √9 + √7 + √3 + 0
√7120 + e = √7120 + e + 0
√6 + √200 = √6 + √200 + 0
√56 + 1/4 = √56 + 1/4 + 0
√8 + √35 + √7 = √8 + √35 + √7 + 0
√742 + √3 + 800 = √742 + √3 + 800 + 0
V18 / 4 + √7 / 6 = √18 / 4 + √7 / 6 + 0
√3200 + √3 + √8 + √35 = √3200 + √3 + √8 + √35 + 0
√12 + e + √5 = √12 + e + √5 + 0
√30 / 12 + e / 2 = √30 / 12 + e / 2
√2500 + √365000 = √2500 + √365000 + 0
√170 + √13 + e + √79 = √170 + √13 + e + √79 + 0
Dan juga untuk semua yang asli.
2,15 + 3 = 2,15 + 3 + 0
144,12 + 19 + √3 = 144,12 + 19 + √3 + 0
788500 + 13,52 + 18,70 + 1/4 = 788500 + 13,52 + 18,70 + 1/4 + 0
3,14 + 200 + 1 = 3,14 + 200 + 1 + 0
2.4 + 1.2 + 300 = 2.4 + 1.2 + 300 + 0
√35 + 1/4 = √35 + 1/4 + 0
e + 1 = e + 1 + 0
7,32 + 12 + 1/2 = 7,32 + 12 + 1/2 + 0
200 + 500 + 25,12 = 200 + 500 + 25,12 + 0
1000000 + 540,32 + 1/3 = 1000000 + 540,32 + 1/3 +0
400 + 325,48 + 1,5 = 400 + 325 + 1,5 + 0
1200 + 3,5 = 1200 + 3,5 + 0
Pengurangan
Menerapkan properti modulatif, sebagai tambahan, nol tidak mengubah hasil pengurangan:
4-3 = 4-3-0
8-0-5 = 8-5-0
800-1 = 800-1-0
1500-250-9 = 1500-250-9-0
Itu memuaskan untuk bilangan bulat:
-4-7 = -4-7-0
78-1 = 78-1-0
4500000-650000 = 4500000-650000-0
-45-60-6 = -45-60-6-0
-760-500 = -760-500-0
4750-877 = 4750-877-0
-356-200-4 = 356-200-4-0
45-40 = 45-40-0
58-879 = 58-879-0
360-60 = 360-60-0
1250000-1 = 1250000-1-0
3-2-98 = 3-2-98-0
10000-1000 = 10000-1000-0
745-232 = 745-232-0
3800-850-47 = 3800-850-47-0
Untuk alasannya:
3 / 4-2 / 4 = 3 / 4-2 / 4-0
120 / 89-1 / 2 = 120 / 89-1 / 2-0
1 / 32-1 / 7-1 / 2 = 1 / 32-1 / 7-1 / 2-0
20 / 87-5 / 8 = 20 / 87-5 / 8-0
132 / 36-1 / 4-1 / 8 = 132 / 36-1 / 4-1 / 8
2 / 3-5 / 8 = 2 / 3-5 / 8-0
1 / 56-1 / 7-1 / 3 = 1 / 56-1 / 7-1 / 3-0
25 / 8-45 / 89 = 25 / 8-45 / 89 -0
3 / 4-5 / 8-6 / 74 = 3 / 4-5 / 8-6 / 74-0
5 / 8-1 / 8-2 / 3 = 5 / 8-1 / 8-2 / 3-0
1 / 120-1 / 200 = 1 / 120-1 / 200-0
1 / 5000-9 / 600-1 / 2 = 1 / 5000-9 / 600-1 / 2-0
3 / 7-3 / 4 = 3 / 7-3 / 4-0
Juga untuk yang irasional:
Π-1 = Π-1-0
e-√2 = e-√2-0
√3-1 = √-1-0
√250-√9-√3 = √250-√9-√3-0
√85-√32 = √85-√32-0
√5-√92-√2500 = √5-√92-√2500
√180-12 = √180-12-0
√2-√3-√5-√120 = √2-√3-√5-120
15-√7-√32 = 15-√7-√32-0
V2 / √5-√2-1 = √2 / √5-√2-1-0
√18-3-√8-√52 = √18-3-√8-√52-0
√7-√12-√5 = √7-√12-√5-0
√5-e / 2 = √5-e / 2-0
√15-1 = √15-1-0
√2-√14-e = √2-√14-e-0
Dan, secara umum, untuk yang asli:
π –e = π-e-0
-12-1,5 = -12-1,5-0
100000-1 / 3-14,50 = 100000-1 / 3-14,50-0
300-25-1,3 = 300-25-1,3-0
4,5-2 = 4,5-2-0
-145-20 = -145-20-0
3.16-10-12 = 3.16-10-12-0
π-3 = π-3-0
π / 2- π / 4 = π / 2- π / 4-0
325.19-80 = 329.19-80-0
-54.32-10-78 = -54.32-10-78-0
-10000-120 = -10000-120-0
-58.4-6.52-1 = -58.4-6.52-1-0
-312.14-√2 = -312.14-√2-0
Perkalian
Operasi matematika ini juga memiliki elemen netral atau sifat modulatifnya:
3x7x1 = 3 × 7
(5 × 4) x3 = (5 × 4) x3x1
Yang merupakan angka 1, karena tidak mengubah hasil perkalian.
Ini juga berlaku untuk bilangan bulat:
2 × 3 = -2x3x1
14000 × 2 = 14000x2x1
256x12x33 = 256x14x33x1
1450x4x65 = 1450x4x65x1
12 × 3 = 12x3x1
500 × 2 = 500x2x1
652x65x32 = 652x65x32x1
100x2x32 = 100x2x32x1
10000 × 2 = 10000x2x1
4x5x3200 = 4x5x3200x1
50000x3x14 = 50000x3x14x1
25 × 2 = 25x2x1
250 × 36 = 250x36x1
1500000 × 2 = 1500000x2x1
478 × 5 = 478x5x1
Untuk alasannya:
(2/3) x1 = 2/3
(1/4) x (2/3) = (1/4) x (2/3) x1
(3/8) x (5/8) = (3/8) x (5/8) x1
(12/89) x (1/2) = (12/89) x (1/2) x1
(3/8) x (7/8) x (6/7) = (3/8) x (7/8) x (6/7) x 1
(1/2) x (5/8) = (1/2) x (5/8) x 1
1 x (15/8) = 15/8
(4/96) x (1/5) x (1/7) = (4/96) x (1/5) x (1/7) x1
(1/8) x (1/79) = (1/8) x (1/79) x 1
(200/560) x (2/3) = (200/560) x 1
(9/8) x (5/6) = (9/8) x (5/6) x 1
Untuk yang irasional:
contoh 1 = e
√2 x √6 = √2 x √6 x1
√500 x 1 = √500
√12 x √32 x √3 = V√12 x √32 x √3 x 1
√8 x 1/2 = √8 x 1/2 x1
√320 x √5 x √9 x √23 = √320 x √5 √9 x √23 x1
√2 x 5/8 = √2 x5 / 8 x1
√32 x √5 / 2 = √32 + √5 / 2 x1
misal √2 = ex √2 x 1
(π / 2) x (3/4) = (π / 2) x (34) x 1
π x √3 = π x √3 x 1
Dan akhirnya untuk yang asli:
2.718 × 1 = 2.718
-325 x (-2) = -325 x (-2) x1
10.000 x (25,21) = 10.000 x (25,21) x 1
-2012 x (-45,52) = -2012 x (-45,52) x 1
-13,50 x (-π / 2) = 13,50 x (-π / 2) x 1
-π x √250 = -π x √250 x 1
-√250 x (1/3) x (190) = -√250 x (1/3) x (190) x 1
- (√3 / 2) x (√7) = - (√3 / 2) x (√7) x 1
-12,50 x (400,53) = 12,50 x (400,53) x 1
1 x (-5638,12) = -5638,12
210,69 x 15,10 = 210,69 x 15,10 x 1
Divisi
Unsur netral pembagian sama dengan perkalian, bilangan 1. Kuantitas tertentu dibagi 1 akan memberikan hasil yang sama:
34 ÷ 1 = 34
7 ÷ 1 = 7
200000 ÷ 1 = 200000
Atau apa yang sama:
200000/1 = 200000
Ini berlaku untuk setiap bilangan bulat:
8/1 = 8
250/1 = 250
1000000/1 = 1000000
36/1 = 36
50000/1 = 50000
1/1 = 1
360/1 = 360
24/1 = 24
2500000/1 = 250000
365/1 = 365
Dan juga untuk setiap rasional:
(3/4) ÷ 1 = 3/4
(3/8) ÷ 1 = 3/8
(1/2) ÷ 1 = 1/2
(47/12) ÷ 1 = 47/12
(5/4) ÷ 1 = 5/4
(700/12) ÷ 1 = 700/12
(1/4) ÷ 1 = 1/4
(7/8) ÷ 1 = 7/8
Untuk setiap bilangan irasional:
π / 1 = π
(π / 2) / 1 = π / 2
(√3 / 2) / 1 = √3 / 2
√120 / 1 = √120
√8500 / 1 = √8500
√12 / 1 = √12
(π / 4) / 1 = π / 4
Dan, secara umum, untuk semua bilangan real:
3.14159 / 1 = 3.14159
-18/1 = -18
16,32 ÷ 1 = 16,32
-185000,23 ÷ 1 = -185000,23
-10000.40 ÷ 1 = -10000.40
156,30 ÷ 1 = 156,30
900000, 10 ÷ 1 = 900000,10
1.325 ÷ 1 = 1.325
Properti modulatif sangat penting dalam operasi aljabar, karena kecerdasan mengalikan atau membagi dengan elemen aljabar yang nilainya 1, tidak mengubah persamaan.
Namun, Anda dapat menyederhanakan operasi dengan variabel untuk mendapatkan ekspresi yang lebih sederhana dan menyelesaikan persamaan dengan cara yang lebih mudah.
Secara umum, semua sifat matematika diperlukan untuk studi dan pengembangan hipotesis dan teori ilmiah.
Dunia kita penuh dengan fenomena yang terus menerus diamati dan dipelajari oleh para ilmuwan. Fenomena ini diekspresikan dengan model matematika untuk memudahkan analisis dan pemahaman selanjutnya.
Dengan cara ini, perilaku masa depan dapat diprediksi, antara lain, membawa manfaat besar bagi peningkatan taraf hidup masyarakat.
Referensi
- Definisi bilangan asli. Diperoleh dari: definicion.de.
- Pembagian bilangan bulat. Diperoleh dari: vitutor.com.
- Contoh Properti Modul. Diperoleh dari: examplede.com.
- Angka alami. Dipulihkan dari: gcfaprendelibre.org.
- Matematika 6. Diperoleh dari: colombiaaprende.edu.co.
- Properti matematika. Diperoleh dari: wikis.engrade.com.
- Sifat perkalian: asosiatif, komutatif dan distributif. Diperoleh dari: portaleducativo.net.
- Sifat penjumlahan. Dipulihkan dari: gcfacprendelibre.org.
